Sensitivity analysis of a branching process evolving on a network with application in epidemiology

نویسندگان

  • Sophie Hautphenne
  • Gautier Krings
  • Jean-Charles Delvenne
  • Vincent D. Blondel
چکیده

We perform an analytical sensitivity analysis for a model of a continuous-time branching process evolving on a fixed network. This allows us to determine the relative importance of the model parameters to the growth of the population on the network. We then apply our results to the early stages of an influenzalike epidemic spreading among a set of cities connected by air routes in the United States. We also consider vaccination and analyze the sensitivity of the total size of the epidemic with respect to the fraction of vaccinated people. Our analysis shows that the epidemic growth is more sensitive with respect to transmission rates within cities than travel rates between cities. More generally, we highlight the fact that branching processes offer a powerful stochastic modeling tool with analytical formulas for sensitivity which are easy to use in practice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitivity Analysis of a Wideband Backward-wave Directional Coupler Using Neural Network and Monte Carlo Method (RESEARCH NOTE)

In this paper sensitivity analysis of a wideband backward-wave directional coupler due to fabrication imperfections is done using Monte Carlo method. For using this method, a random stochastic process with Gaussian distribution by 0 average and 0.1 standard deviation is added to the different geometrical parameters of the coupler and the frequency response of the coupler is estimated. The appli...

متن کامل

Application of Artificial Neural Network in Landscape Change Process in Gharesou Watershed, Golestan Province

Land use change is certainly the most important factor that affects the conservation of natural ecosystems, resulting the conversion of natural lands such as forests and pastures into agricultural, industrial and urban areas. Despite numerous studies investigating landscape patterns due to land use change, the driving forces of landscape change has been less studied in Iran. In this study, Arti...

متن کامل

Determination of Suitable Operating Conditions of Fluid Catalytic Cracking Process by Application of Artificial Neural Network and Firefly Algorithm

Fluid Catalytic Cracking (FCC) process is a vital unit to produce gasoline. In this research, a feed forward ANN model was developed and trained with industrial data to investigate the effect of operating variables containing reactor temperature feed flow rate, the temperature of the top of the main column and the temperature of the bottom of the debutanizer tower on quality and quantity of...

متن کامل

All Health Partnerships, Great and Small: Comparing Mandated With Emergent Health Partnerships; Comment on “Evaluating Global Health Partnerships: A Case Study of a Gavi HPV Vaccine Application Process in Uganda”

The plurality of healthcare providers and funders in low- and middle-income countries (LMICs) has given rise to an era in which health partnerships are becoming the norm in international development. Whether mandated or emergent, three common drivers are essential for ensuring successful health partnerships: trust; a diverse and inclusive network; and a clear governance structure. Mandated and ...

متن کامل

Application of Response Surface Methodology and Artificial Neural Network for Analysis of p-chlorophenol Biosorption by Dried Activated Sludge

Phenolic compounds are considered as priority pollutants because of their high toxicity at low concentration. In the present study, the sorption of p-chlorophenol (p-CP) by dried activated sludge was investigated. Activated sludge was collected as slurry from the sludge return line of a municipal wastewater treatment plant. Sorption experiments were carried out in batch mode. In order to invest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Complex Networks

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015